Сточные воды тэс и их очистка. Анализ методов снижения и предотвращения загрязнения водных бассейнов стоками тэс

Лекция 17

Анализ методов снижения и предотвращения загрязнения водных бассейнов стоками ТЭС

К сточным водам тепловых электрических станций отно­сятся: охлаждающие воды (после охлаждения конденсаторов турбин, масло - и воздухоохладителей и пр.); сбросные воды из систем гидрозолоудаления; сточные воды водоподготовительных установок и конденсатоочисток; отра­ботавшие растворы после химической очистки теплосилового оборудования и его консервации; нефтезагрязненные воды; растворы от обмывок поверх­ностей нагрева котлов, работающих на мазуте. Количество этих стоков и их состав весьма различны и зависят от мощности ТЭС, вида используемого топлива, принятого способа водоподготовки, системы золоудаления и других факторов.

Для уменьшения загрязнения водоемов сточными водами ТЭС возможны два пути:

1) глубокая очистка всех стоков до предельно допустимых кон­центра­ций (связан с большими затратами на сооружение и эксплуатацию соответ­ствующих установок);

2) организация систем повторного использования стоков - оборотных си­стем, с многократным использованием воды. При этом очистка стоков до ПДК уже не обязательна, достаточно довести их качество до уровня, требуемого технологическим процессом, в котором они снова будут использоваться.

Второй путь ведет к резкому сокращению количества воды, забираемой тепловой электростанцией, и создает основы для разработки бессточных систем. В целом, реализация изложенных выше методов и средств очистки в сочетании с рациональным водопользованием на ТЭС позволит сделать их бессточными.


Сточные воды после химических промывок. Из-за использования большого количества различных техноло­гий химических очисток оборудования образующиеся при них сто­ки весьма разнообразны по своему химическому составу и разрабо­тать типовые решения по их переработке очень трудно.

Заводом «Котлоочистка» воды после химических промывок рекомендуется собирать в баки, целесообразнее всего на узле нейтрализации обмывочных вод РВП, а при его отсутствии на специально построенном узле нейтрализации, и нейтрализовать их известью, отделять гидрооксиды тяжелых металлов на вакуумном или камерном фильтре, а шлам подвергать захоронению.

Если для промывки применялись минеральные кислоты, то оставшуюся воду можно небольшими порциями подавать на установку солевых стоков химводоочистки; если использовались органические кислоты, то воду необходимо сбрасывать в бассейны-шлаконакопители или упаривать.

В последние годы предпринимаются попытки при очистке поверхностей нагрева отказаться от применения химических реагентов или резко сократить их количество, отказавшись от органических кислот. Разработанная ВТИ, МЭИ, Мосэнерго, ГЭЦ-25 Мосэнерго парокислородная очистка позволяет для предпусковых очисток на блоках СКД совершенно не исполь-ювать химреагенты, а на барабанных котлах применять минеральные кислоты только для очистки экранных поверхностен нагрева (по упрощенной технологии с последующей пассива­цией их паром и кислородом).

Нефтесодержащие сточные воды. Проблема предотвращения сброса нефтесодержащих сточных вод в основном решена. В настоящее время требуется совершенст­вование существующих установок для очистки этих вод, в частнос­ти, переход на использование малогабаритных маслонефтелову-шек, фильтров «Полимер», а также более широкое применение фильтров с активированными углями. Хорошим сорбентом для установок по очистке нефтесодержащих стоков является полукокс канскоачинских углей. Однако вопрос о промышленном производстве полукок­са (в том числе и активированного) до сих пор не решен, несмотря на многочисленные лабораторные и промышленные исследования, подтвердившие его эффективность и необходимость применения на предприятиях энергетики.

Для предотвращения загрязнения охлаждающих вод через неплотности маслоохладителей целесообразно использовать плот­ные маслоохладители нового поколения МБР.

На ТЭС, где мазут является основным или резервным топливом, необходимо предусматривать в мазутохозяйстве предварительную очистку подтоварных вод на нефтеловушке производитель­ностью 10-20 мУч.

Продувочные воды систем гидрозолоудаления (ГЗУ). Эти воды содержат соединения фтора, мышьяка, ванадия, минеральные соли. Несмотря на содержание токсичных компонен­тов до настоящего времени около 50 электростанций работают с прямоточными системами ГЗУ, воды из которых сбрасывают в водоисточники. Необходимо прежде всего перевести все систе­мы ГЗУ на оборотный цикл и добиться максимального сокращения их продувок.

Сточные воды водоподготовительных установок. Существенную роль в повышении экологической чистоты ТЭС играют совершенствование схем водоподготовки и улучшение вводно-химического режима.

Необходимость предотвращения загрязнений природных водоемов стоками водоподготовительных установок (ВПУ) привела к значительному усложнению их схем, увеличению капитальных затрат и эксплуатационных расходов на обработку и утилизацию минерализованных стоков.

Хотя содержащиеся в сточных водах ВПУ нейтральные соли не являются токсичными, эти стоки служат основным объектом природоохранной деятельности. Наиболее простой и дешевый способ их сокращения - совершенствование технологического оборудования, его эксплуатации и ремонтов с целью умень­шения потерь воды и пара, на отдельных электростанциях они составляют 10% и более (на некоторых достигнуты реальные потери менее 1,5%).


Под бессточностью ВПУ подразумевается достижение такого качества сточных вод, которое обеспечивает возможность их повторного использования в цикле ТЭС. При этом если солесодержание обработанной сточной воды не превышает солесодержания исходной воды, допускаются качественные изменения воды по сравнению с исходной (например, замена бикарбонат-иона хлорид - или сульфат-ионом, катиона кальция или магния катионом натрия и т. д.).

Бессточность (малосточность) обеспечивается за счет перевода растворимых солей в нерастворимые непосредственно внутри технологи­ческого цикла или с помощью дополнительных реагентов. Поэтому бес­сточная ТЭС не является безотходной.

При проектировании ВПУ главное внимание должно быть уделено максимально возможному уменьшению объема стоков путем повторного их использования в качестве взрыхляющих, регенерационных и отмывочных вод. Это позволит сократить потребление воды для ВПУ из внешнего источника и уменьшить объем стоков на 30-40%.

На электростанциях, сжигающих твердое топливо, минерализованные стоки обычно используются для транспортирования золошлаковых отходов.

Перспективным является совершенствование технологии ионного об­ме­на для сокращения количества сточных вод.

Перспективны комбинированные методы обессоливания, включающие мембранные аппараты (обратный осмос, электродиализ) или испарители мгновенного вскипания с дообессоливанием воды на ионообменных филь­трах.

Термический способ подготовки добавочной воды отличается от химического обессоливания меньшей чувствительностью к повышенной минерализации и содержанию органических загрязнителей в исходной воде. Количество сточных вод после испарителей может быть сокращено до 5 – 10% исходного, а их минерализация повышена до 100 г/л и более. Однако эти установки требуют дополнительного резервирования из-за их меньшей маневренности, а это определяет высокую металлоемкость схемы в целом.

Использование испарителей мгновенного вскипания позволяет применять для их подпитки воду, прошедшую упрощенную предподготовку.

При переходе к мембранным или термическим методам приготовления обессоленной воды количество забираемых из природного водоема солей будет соответствовать количеству сбрасываемых, но большей концентрации. Однако в пределах зоны рассеивания в водоеме это изменение практически не скажется на общем его солесодержании.

Для существующих оборотных систем охлаждения с кратностями упаривания 1,5-2,0 разработана и широко внедрена эффективная технология стабилизации карбоната кальция, позволяющая во многих случаях без больших капитальных затрат сократить продувку системы. Разработана также технология обработки воды для систем с большими кратностями упаривания (более 10,0) и минимальной продувкой. Ведется проектирование систем с минимальной водной продувкой для ряда ТЭС в районе озера Байкал. Разрабатываются режимы обработки воды в системах охлаждения с учетом подачи в них различных потоков сточных вод.

Градирни необходимо выполнять с минимальным капельным уносом, продувкой, близкой к единице, и отводом максимального количества тепла, что и позволяет иметь пруд-охладитель небольших размеров. Продувочная вода градирен сбрасывается в пруд-охладитель, а подпитка градирен осуществляется из него же. Пруд может одновременно использоваться для разведения и откорма рыбы. Разумеется, должны быть выпол­нены мероприятия по предупреждению его загрязнения нефтепродуктами. Несколько повышенная температура воды в пруде будет способствовать увеличению продуктивности рыбного хозяйства , а его большая аккумулирующая способность позволит исключить резкие, неблагоприятные для рыбоводства, колебания температуры воды при изменениях режима работы ГРЭС. Чтобы предотвратить зарастание пруда, необходимо скашивать расти­тельность, разводить растительноядных рыб и т. д.

Солевые стоки в такой пруд недопустимы. Во избежание опасного концентрирования в пруде солей необходимо предусматривать частичную смену воды в периоды паводков, когда минерализованность поверхностного стока незначительна. Тогда в пруде будет происходить концентрирование не привнесенных, а собственных солей водоисточника, и живой природе и растительному миру будет наноситься минимальный вред.

При уменьшении регулярных продувок градирен надо считать­ся с возможностью концентрирования примесей в оборотной во­де и необходимостью стабилизации качества воды по кальцию для предупреждения накипеобразования. В этом случае соли из системы выводятся с капельным уносом и рассеиваются по территории, окружающей ТЭС. Можно не допускать значитель­ного концентрирования примесей в градирне, отбирая воду из оборотной системы на химводоочистку ТЭС. Но при этом, однако, количество солей, подлежащих переработке и утилизации при химической очистке воды, увеличивается как минимум в 2 раза.

Поскольку капельный унос из современных градирен невелик и составляет около 0,05% общего расхода, реальное концентри­рование солей в них может увеличивать солесодержание в 20 раз, т. е. до уровня, опасного для материалов градирни, циркуляцион­ных водоводов, конденсаторных трубок.

Сброс продувочных вод градирен в пруд-охладитель позволит работать без концентрирования солей. При этом для уменьшения солесодержания продувочной воды градирен до уровня, характерного для исходной воды, при необходимости можно использовать мембранные или испарительные установки. Хотя в настоящее время они требуют больших затрат и связаны с необходимостью утилизации солей, проработка такого метода очистки оправдана с учетом предстоящего введения высокой платы за воду. Эти установки могут быть также одновременно частью систем подготовки воды на восполнение пароводяных потерь ТЭС и тепло­сети.

Обессоливание подпиточной воды градирен при невозмож­ности создания пруда-охладителя потребует больших дополни­тельных капитальных и эксплуатационных затрат. Запасным вариантом может быть применение «сухих» воздушных градирен Геллера, надо учитывать только, что они снижают экономичность ТЭС на 7-8%.

Поверхностные сточные воды . Эти сточные воды содержат, как правило, взвешенные вещества и в зависимости от культуры эксплуатации оборудова­ния и содержания территории ТЭС могут загрязняться минераль­ными солями и нефтепродуктами. Схемы сбора, очистки и исполь­зования поверхностного стока практически отсутствуют.

В масштабах отрасли использование поверхностных сточных вод в технологическом цикле электростанций может дать экономию десятков млн. м3 свежей воды в год. Для этого необходимо при проектировании ТЭС предусматривать емкости для приема ливневых и талых вод, очистные сооружения для очистки их от нефтепродуктов и взвешенных веществ.

Общим недостатком водного хозяйства ТЭС является расточи­тельное расходование свежей воды. До настоящего времени не проектируются раздельные системы канализации для чистых и загрязненных сточных вод. Объединенная канализация приводит к тому, что общее количество сточных вод увеличивается, а кон­центрация загрязнителей уменьшается, осложняя очистку. Нефтесодержащие сточные воды после установок по очистке от нефтепродуктов часто не направляются на повторное исполь­зование. Вода, используемая для охлаждения пробоотборных устройств, цилиндров компрессоров и другого оборудования, как правило, сбрасывается в общий поток сточных вод, хотя и не является загрязненной. По данным обследований, для каждой станции мощностью от 400 до 1500 МВт неэкономное расходование воды увеличивает количество сточных вод на 1 млн. м3 в год.

Целесообразно сооружать на ТЭС резервные емкости для сбора чистых потоков сточных вод (или сточных вод после очистки), которые бы обеспечивали стабильное повторное исполь­зование сточных вод и условия эксплуатации оборудования, например водоподготовительного, не зависящие от колебания расходов сточных вод.

Электростанции необходимо оснащать приборами для контроля за расходованием воды в различных системах водного "хозяйства.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ТЕПЛОЭЛЕКТРОПРОЕКТ

УТВЕРЖДАЮ:
Министр энергетики и
электрификации СССР
П. Непорожний
24 марта 1976 г.

РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ОБРАБОТКИ
И ОЧИСТКИ ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД
ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

ИНФОРМЭНЕРГО

Москва 1976

Настоящее «Руководство» разработано Всесоюзным государственным ордена Ленина и ордена Октябрьской Революции проектным институтом «Теплоэлектропроект» и обязательно для применения при проектировании вновь строящихся и реконструируемых тепловых электрических станций.

«Руководство» разработано в развитие «Временных указаний по технологическому проектированию сооружений для очистки производственных сточных вод тепловых электростанций», которые с октября 1976 г. утрачивают силу.

«Руководство» согласовано с Министерством мелиорации и водного хозяйства СССР, Главрыбводом Министерства рыбного хозяйства СССР, Министерством здравоохранения СССР.

. Общая часть

Для пиковых котлов, оборудованных дробеструйной очисткой поверхностей нагрева, периодичность обмывок принимать один раз в год.

* Органические вещества присутствуют в виде солей органических кислот с железом, аммонием, натрием.

Следует рассматривать возможность подачи этих вод в систему бытовой канализации, имеющей в своем составе сооружения с полной биологической очисткой, на которых будет происходить доочистка их от органических соединений.

периодические расходы: загрязненный мазутом более 10 мг/л конденсат, дождевые и талые воды с обвалованной территории склада топлива и с участков территории мазутного хозяйства, загрязняемых в процессе эксплуатации, отмывочные воды фильтров конденсатоочистки, отводимые, как правило, через бак-усреднитель. 8.10 . На электростанциях, работающих на жидком топливе и газе, должна предусматриваться очистка сточных вод, загрязненных нефтепродуктами. Необходимо рассматривать возможность и целесообразность использования действующих или проектируемых очистных сооружений соседних промышленных предприятий или населенных мест.

Допускается подача загрязненных нефтепродуктами сточных вод в систему хозяйственно-фекальной канализации, имеющей в своем составе сооружения полной биологической очистки. Содержание нефтепродуктов в общем потоке сточных вод, поступающих на очистку, не должно превышать 25 мг/л.

8.11 . Очистку сточных вод от нефтепродуктов проектировать по схеме: приемный резервуар, нефтеловушка, механические фильтры.

Установка фильтров с активированным углем после механических фильтров должна быть обоснована.

Примечание . Допускается по условиям компоновки очистных сооружений проектировать вместо нефтеловушки напорную флотационную установку .

8.12 . Емкость приемного резервуара надлежит выбирать из расчета двухчасового притока расчетного расхода сточных вод и промывочных вод фильтров очистных сооружений.

Приемный резервуар необходимо оборудовать устройствами для улавливания плавающих нефтепродуктов и осадка, их отведения, а также для равномерной подачи воды на последующую ступень очистки.

Остаточное содержание нефтепродуктов после приемных резервуаров принимать 80 - 70 мг/л.

8.13 . Проектирование нефтеловушек (напорных флотационных установок) выполнять в соответствии с СНиП II-32-74 «Канализация. Наружные сети и сооружения» и СН 173-61 «Указания по проектированию наружной канализации промышленных предприятий» Часть 1.

Остаточное содержание нефтепродуктов после нефтеловушек (флотационных установок) принимать 30 - 20 мг/л.

8.14 . Уловленные в приемных емкостях, нефтеловушках (флотаторах) нефтепродукты надлежит подавать в расходные емкости мазутного хозяйства электростанции для последующего сжигания в котлах. Осадок от указанных сооружений складируется на шламоотвале с водонепроницаемым основанием, с последующим (после подсушки) вывозом в места, согласованные с органами Государственной санитарной инспекции. Емкость шламоотвала принимать из расчета накапливания в нем осадка в течение 5 лет.

8.15 . Механические фильтры проектировать с двухслойной загрузкой кварцевым песком и дробленным антрацитом (коксом).

Скорость фильтрации принимать 7 м/ч.

Остаточное содержание нефтепродуктов после механических фильтров принимать 10 - 5 мг/л.

8.16 . Скорость фильтрации для фильтров с активированным углем принимать 7 м/ч. Конечное содержание нефтепродуктов в очищенных водах после угольных фильтров - до 1 мг/л.

8.17 . Промывку механических и угольных фильтров предусматривать горячей водой с температурой 80 - 90 °С.

Расчетная скорость промывки - 15 м/ч.

8.18 . Вода, прошедшая очистку, должна использоваться повторно на технологические нужды электростанции: на подпитку оборотной системы технического водоснабжения или на питание водоподготовки.

При использовании очищенных от нефтепродуктов вод в системе оборотного технического водоснабжения, а также для питания водоподготовок, имеющих предочистку с известкованием, фильтры с активированным углем в составе очистных сооружений не предусматривать.

10.4 . Необходимо рассматривать возможность и целесообразность использования дождевых и талых вод с территории электростанции на собственные нужды: на подпитку оборотных систем водоснабжения, питание водоподготовок и пр.

10.5 . Дождевые и талые воды с кровли главного корпуса, как правило, через сеть внутренних водостоков необходимо отводить в систему технического водоснабжения, с кровли объединенного вспомогательного корпуса - на собственные нужды водоподготовки, приготовление реагентов и пр.

Приложение

Расчет величины продувки системы ГЗУ (методика расчета разработана ВТИ им. Ф.Э. Дзержинского)

Размеры минимальной продувки системы ГЗУ, необходимой для обеспечения концентрации сульфатов на безопасном, с точки зрения образования отложений, уровне определяются:

Для систем с мокрыми золоуловителями:


Для систем с сухими золоуловителями

где Q ор.в - расход воды на орошение мокрых золоуловителей, м 3 /ч;

Общая щелочность орошающей воды, мг-экв/л;

S пр - процентное содержание серы в топливе, приведенное к 1000 ккал/кг низшей теплотворной способности;

Y з и Y шл - количество соответственно золы и шлака, поступающих на золоотвал, т/ч;

Q ф - количество воды, теряемое из системы в резуль тате фильтрации, м 3 /ч;

Содержание сульфатов в золе, %;

Содержание сульфатов в воде, добавляемой в систему ГЗУ, мг-экв/л;

Q доб.в - количество воды, добавляемой в систему ГЗУ, м 3 /ч;

l - основание натуральных логарифмов;

τ - время пребывания осветленной воды в бассейне золошлакоотвала.

Если величина Q пр , определенная по приведенным уравнениям, окажется менее 0,5 % от расхода воды в системе, от организации продувки можно отказаться.

Сточные воды от разных источников очищают соответствующими методами.

· От систем охлаждения теплоэнергетического

оборудования

Применяют оборотные системы охлаждения: с градирнями,

с брызгальными устройствами, с прудом-охладителем. С внедрением оборотных систем охлаждения происходит ухудшение качества воды в процессе испарения и капельного уноса, которое существенно ухудшает технико-экономические показатели работы теплоэнергетического оборудования.

Для борьбы с биологическими обрастаниями и минеральными отложениями в трубках конденсаторов используют следующие методы: механические (резиновые шарики, циркулирующие в трубках конденсаторов); электромагнитную обработку воды; химические (подкисление, декарбонизация, обработка фосфатами – ОЭДФК, хлором и т.д.).

Применяют метод поддержания оптимального солевого баланса в системе, направляя продувочные воды градирен на ВПУ для подготовки подпиточной воды теплосети (этот вариант применен на многих ТЭЦ).

К биологическим методам борьбы относится, в частности, разведение растительноядных рыб в водоемах (в системе с прудами-охладителями). Если в системы охлаждения не производится сбросов других видов сточных вод, то практически с химической стороны они не угрожают водоемам. Однако следует сказать, что в системы охлаждения обычно включаются также и маслоохладители турбин, что часто приводит к перетоку масла в охлаждающую воду, которое затем попадает в водоемы. В последнее время используют надежные пластинчатые маслоохладители, снявшие и эту проблему.

· От водоподготовок и конденсатоочисток

С экономической точки зрения, основным направлением по сокращению количества сбрасываемых солей с установок ВПУ является применение современных технологий обработки воды со сниженными расходами реагентов.

При обработке стоков ВПУ следует различать две группы сточных вод: сбросы с установок предочистки и сбросы с установок обессоливания.

Методы предочистки органично входят в существующие схемы ВПУ и должны сохранять свое значение и в ближайшей перспективе. Важным преимуществом предочистки перед другими методами, с точки зрения охраны водоемов, является то, что сбрасываемые примеси находятся в воде в виде осадков. Это значительно упрощает их отделение от воды.

Наиболее предпочтительны схемы обработки продувочной воды осветлителями, при использовании которых осветленная продувочная вода может быть возвращена обратно в ВПУ. С точки зрения уменьшения габаритов площадей, занятых под установку нейтрализации и утилизации шлама, наиболее интересна схема с возвратом продувочной воды в ВПУ без ее нейтрализации и с обезвоживанием шлама на пресс-фильтрах или барабанно-вакуумных фильтрах. При этом на ВПУ может быть возвращено максимально возможное из всех вариантов количество осветленной воды, а следовательно, возможные расходы реагентов на предочистке и количество сбрасываемых примесей (в частности, в виде шлама) будут минимальны. В этом случае также существенно сокращаются площади, необходимые для организации шламоотвала. В России в свое время проводили опытно-промышленные испытания по обжигу шлама осветлителей в аппаратах погружного горения и получению из него вновь извести, которую можно опять использовать в схеме ВПУ. Широкого применения этот метод не нашел из экономических соображений. В настоящее время, как правило, продувочные воды подвергают отстою, после чего осветленная вода возвращается в цикл, а концентрированный шлам с частью воды направляется через систему ГЗУ на золоотвал.

Если не считать некоторого количества грубодисперсных примесей, поступающих в сточные воды с обессоливающей части ВПУ при взрыхлении фильтров, эти воды представляют собой истинные растворы солей, что в значительной мере затрудняет задачу их обработки. Это относится и к продувочным водам испарителей и паропреобразователей.

В настоящее время такие сточные воды в зависимости от местных условий рекомендуется направлять: 1) в водоемы с соблюдением санитарно-гигиенических и рыбохозяйственных требований к качеству воды водоема в расчетном растворе; 2) в систему гидрозолоудаления с использованием на нужды гидротранспорта и золы и шлама; 3) в пруды-испарители при благоприятных климатических условиях; 4) на выпарные установки; 5) в подземные водоносные горизонты, не пригодные для хозяйственных целей и надежно изолированные от подземных вод, используемых для водоснабжения. Промывочные воды электромагнитных фильтров сбрасываются в золо- и шламоотвалы.

При сбросе сточных вод ВПУ следует учитывать их резкопеременный расход и значительные колебания значений рН. Поэтому рекомендуется собирать сточные воды ВПУ в специальные баки-усреднители. Емкость таких баков надо выбирать с учетом циклов регенераций фильтров. При сбросе сточных вод ВПУ в системе гидрозолоудаления (ГЗУ) эти воды не должны изменять состав воды, циркулирующей в системе, т.е. не приводить к появлению отложений.

Однако наибольшее распространение получил процесс нейтрализации известковым молоком, так как в этом случае не столь резко повышается солесодержание, как при применении других реагентов. Объясняется это тем, что нейтрализация известью сопровождается образованием осадка, который может быть выведен из воды.

Технологический процесс нейтрализации состоит в заполнении баков-нейтрализаторов кислыми и щелочными водами, подаче определенного количества нейтрализующего реагента и перемешивания жидкости в баке до установления постоянного значения рН нейтрализованной воды.

Для снижения выбросов на ВПУ повторно используют взрыхляющие, регенерационные и промывочные воды. Однако существенно сократить сбросы можно лишь в случае применения современных технологий обработки воды (противоточные и двухпоточно-противоточные схемы ионирования), которые позволяют снизить расход реагентов (кислоты и щелочи) до 1,5 стехиометрий по отношению к количеству задержанных солей. Эти технологии в различных модификациях широко и давно применяются за рубежом и все большее применение находят и в России. Обессоливающая установка по данной технологии длительное время находится в эксплуатации на Волжской ТЭЦ-2, при этом удельные расходы реагентов составляют 1,7…1,8 г-экв./ г-экв.

Значительно отличаются от химического обессоливания мембранные технологии обессоливания воды (электродиализ и обратный осмос). В этом случае обессоливание происходит практически без применения реагентов, только за счет ионообменных мембран, т.е. в природу возвращают то же количество солей, которое было взято из нее с водой, но только в более концентрированном виде (в меньшем количестве воды). Необходимо иметь в виду, что мембранные технологии очистки воды экономически целесообразны, как правило, при низком качестве исходной воды в 2…4 раза худшем, чем средняя вода. Установка обратного осмоса (УОО) производительностью 50 м3/ч находится в эксплуатации на Воронежской ТЭЦ. Предварительная очистка воды перед подачей ее на УОО осуществляется на предочистке (коагуляция с известкованием и очистка от взвешенных на механических фильтрах) и последующем умягчении на Na-катионных фильтрах. Одноступенчатая электродиализная установка (УЭО-100-4/25) производительностью 100 м3/ч позволила, например, снизить содержание солей в воде на 75 \%. Принципиальная схема ХВО на базе электродиализных установок строится по принципу: предочистка; доочистка на фильтрах тонкой очистки; обессоливание на электродиализных установках; доочистка на ионообменных фильтрах и ФСД.

Широкое применение в энергетике (как в России, так и за рубежом) нашел метод подготовки добавочной воды паровых котлов с использованием испарителей. Наиболее перспективными и оптимальными с экономической точки зрения являются испарители мгновенного вскипания (ИМВ). Перед подачей воды на испарители необходима такая же предварительная очистка, как и для УОО.

Применяемый в настоящее время практически на всех российских электростанциях с прямоточными котлами кислородный водно-химический режим позволяет увеличить фильтроцикл фильтров конденсатоочистки (БОУ) в 3…5 раз, снижая тем самым сбросы в окружающую среду в такое же количество раз.

· от нефтепродуктов

Отстаивание – наиболее распространенный метод выделения нефтепродуктов из сточных вод различных предприятий. Главные причины этого – самопроизвольность, экономичность процесса и кажущаяся очевидной простота расчета и проектирования отстойных сооружений.

Флотация дисперсных частиц из сточных вод основана на способности их закрепляться на погруженной в воду гидрофобной поверхности. В качестве такой поверхности обычно используют поверхность пузырьков газа, которым до этого насыщают обрабатываемую жидкость. Всплывающие или образующиеся в объеме жидкости пузырьки захватывают частицы и транспортируют их к поверхности, откуда частицы удаляют в виде концентрата.

Насыщение воды воздухом в установках напорной флотации производят растворением его под давлением в напорных резервуарах. Сточную воду забирают насосом из накопительного резервуара и подают в напорный бак. На линии рециркуляции воды из напорного патрубка насоса во всасывающий патрубок установлен воздушный эжектор, подающий воздух в объеме 3…5\%-го расхода воды через насос. Сжатая в насосе паровоздушная смесь выдерживается в напорном резервуаре в течение 3…5 мин, после чего через дросселирующую арматуру подается во флотоотстойник, где пузырьки, проходя через слой воды, флотируют частицы нефтепродуктов.

Средняя эффективность очистки воды по схеме напорной флотации в таких флотоотстойниках при давлении в напорном резервуаре 4,0…4,5 кгс/см2 и с применением коагуляции составляет около 88 \%.

Фильтрование обычно используют на заключительных стадиях очистки сточных вод и на этом основании его часто относят к методам доочистки. Однако метод фильтрования может быть с успехом использован и в качестве основного, если концентрация нефтепродуктов в сточных водах, подаваемых на очистку, не превышает 10…20 мг/дм3.

Процесс фильтрования сточных вод, загрязненных нефтепродуктами, основан на адгезии (прилипании) эмульгированных капель нефтепродуктов к поверхности зерен фильтрующего материала. В общем случае процесс фильтрования определяется множеством технологических параметров, в первую очередь свойствами пористой и фильтруемой сред, гидродинамическими режимами процесса и температурой.

При фильтровании частицы масла улавливаются слоем, заполняя часть объема пор и насыщая этот объем. Увеличение насыщения приводит к тому, что фильтрующий материал не в состоянии удержать захваченное масло и оно в виде пленки стекает по стенкам канала слоя в направлении потока. В какой-то момент времени в сечении слоя устанавливается равновесие между количеством масла, выделяющегося из потока на поверхность слоя, и количеством масла, стекающего из этого объема в виде пленки в более глубокие слои. При этом концентрация достигает критического значения, которое можно считать максимальным насыщением слоя маслом при данных условиях проведения процесса фильтрования. С течением времени фронт максимальной насыщенности сдвигается к нижней границе слоя и концентрация масла в фильтрате увеличивается. Это служит сигналом к отключению фильтра на регенерацию, если он не отключается по перепаду давления воды.

В схемах очистных сооружений тепловых электростанций в более или менее полном объеме представлены описанные выше методы очистки воды от нефтепродуктов. Загрязненные нефтепродуктами сточные воды собираются в усреднительный бак, рассчиты-ваемый обычно на двухчасовую производительность сооружений.

В баке происходит первичное отстаивание грубодисперсных нефтепродуктов и тонущих примесей (песка, продуктов коррозии и др.). Удаление всплывших нефтепродуктов производят через воронку, устанавливаемую на поплавке, а осевших примесей – через патрубок в нижней части бака. После первичного отстоя сточные воды направляются в нефтеловушку. Очищенная в нефтеловушке вода сливается в промежуточный бак и насосом подается в установку напорной флотации, после которой подвергается очистке в двух степенях фильтрования. Обычно в качестве первой ступени используют фильтры, загруженные антрацитом. Во второй ступени очистку производят на фильтрах активированного угля. Отмывку загрязненных фильтров производят горячей водой со сбросом ее в усреднительный бак.

Емкость поглощения нефтепродуктов, г/г, для различных марок активированных углей в среднем составляет: АГ-5 – 0,15; АГ-3 – 0,08; АП-3 – 0,06; БАУ – 0,04; березовский – 0,03. Как видно, наибольшей емкостью обладает уголь марки АГ-5, емкость же остальных намного ниже и примерно одного порядка. Учитывая дефицит активированных углей и их высокую стоимость, ведут поиски других сорбентов. В настоящее время взамен активированного угля предлагается биоадсорбент С-верад, не уступающий ему по емкости поглощения и в несколько раз дешевле. Поскольку С-верад иммобилизует бактерии, перерабатывающие нефтепродукты в активный ил, через определенное время в отработанном адсорбенте нефти не остается, поэтому проблем с его утилизацией не возникает.

При применении реагентной флотации сооружения дополняются реагентным хозяйством (коагулянтом), аналогичным химводоочисткам. Подачу коагулянта производят перед флотоотстойником (в энергетике схемы с применением коагулянта не нашли широкого применения из-за отсутствия существенного эффекта в его применении). Выделенные в установках сооружений нефтепродукты и осадок собирают в специальные баки, откуда перекачиваются насосами на обезвреживание (сжигание, захоронение).

Оптимальным типом сооружений как с точки зрения экономики, так и с учетом получаемого качества очистки являются: отстой, флотация, механические фильтры и фильтры активированного угля, регенерируемые паром – все аппараты выполняются из металла в наземном исполнении. Эта схема позволяет получить качество очищенной воды не более 1 мг/дм3 , при нефтесодержании подаваемой на очистку воды до 100 мг/дм3 .

· ОТ обмывок РВП и поверхностей нагрева котлов

Учитывая наличие токсичных веществ в этих сточных водах, необходимо до сброса в водоем предусмотреть их нейтрализацию и обезвреживание. Обмывочные воды направляют в баки-нейтрализа-торы, причем каждый бак-нейтрализатор должен вмещать обмывочные воды от обмывки одного РВП и реагенты для их обработки. В баках предусматривается осаждение ванадийсодержащего шлама, удовлетворяющего требованиям металлургических заводов.

На первой стадии нейтрализация осуществляется едким натром до величины рН, равной 4,5…5, для осаждения окислов ванадия и последующего отделения ванадийсодержащего шлама – на фильтр-прессах типа ФПАКМ. На второй стадии осветленную воду первого этапа раствором извести обрабатывают до величины рН, равной 9,5…10 – для осаждения окислов железа, никеля, меди, а также сульфата кальция. Полученный шлам направляют на нефильтруемый шламоотвал, а осветленная вода повторно используется для обмывок.

Средний ориентировочный размер стока обмывочных вод для крупной ГРЭС составляет 10…15 т/ч.

· Сточные воды химических очисток

Одним из основных недостатков этих сбросов являются их резкопеременный, «залповый» расход и меняющиеся концентрации, и состав примесей во время промывки. Это приводит к необходимости иметь емкости, которые как минимум должны быть рассчитаны на весь объем сбрасываемой воды с учетом ее трехкратного разбавления.

Наличие и концентрации некоторых примесей полностью зависят от метода промывки (С1-, формальдегид, гидразин и др.), в то время как концентрации железа, образователей пены практически одинаковы для всех методов. Для удобства подбора метода очистки промывочных вод их можно условно разделить на три группы по признаку влияния содержащихся в них примесей на санитарный режим водоемов:

1) неорганические вещества, концентрация которых не превышает значения их ПДК в водоемах; это сульфаты и хлориды кальция, магния и натрия;

2) токсичные вещества, содержание которых значительно превышает их ПДК в водоемах; это соли железа, меди, цинка, фторсодержащие соединения, гидразин;

3) органические вещества, аммонийные соли, нитриты, сульфиды, которые могут подвергаться бактериальному или непосредственному окислению; сброс таких веществ должен рассчитываться по БПК в водоеме.

Практически при обезвреживании промывочных вод должны подвергаться выделению вещества второй группы, а окислению до допустимых БПК – вещества третьей группы.

В основном способ очистки промывных и консервационных вод зависит от вида применяемого топлива и принятой схемы удале-ния золы. С этой точки зрения есть два варианта очистки таких вод:

1) очистка на ТЭС, работающих на жидком и газовом топливе, а также на ТЭС, работающих на твердом топливе с разомкнутой системой ГЗУ;

2) очистка на ТЭС, работающих на твердом топливе с замкнутой системой ГЗУ. На газомазутных ТЭС сбросы воды от водных промывок, содержащие грубодисперсные примеси, должны для их отделения направляться в открытую емкость, объем которой выбирается в зависимости от типа котлов и объемов промываемых контуров.

На газомазутных ТЭС и ТЭС с разомкнутой системой ГЗУ схема очистки промывных вод предполагает три стадии:

1) сбор всех отработавших растворов и части наиболее загрязненных отмывочных вод (рН < 6) в емкости-усреднители;

2) выделение из раствора токсичных веществ второй группы

с утилизацией осадка в баках-нейтрализаторах;

3) очистка воды от веществ третьей группы.

При обезвреживании сточных промывочных вод основными задачами являются разрушение образовавшихся при промывках комплексов металлов с реагентами, выделение этих металлов в осадок и разрушение органических соединений. Осаждение ионов тяжелых металлов (Fe, Cu, Zn) достигается при повышении рН до 11,0 (раствором извести) в случае применения для промывок растворов соляной, адипиновой, фталевой и дикарбоновых кислот. В случае же применения цитратного раствора при рН = 10 наблюдается полное разрушение цитратных комплексов железа. Комплексы меди и цинка с трилоном не разрушаются во всем интервале значений рН.

На ТЭС с замкнутой системой ГЗУ можно проводить сброс отработавших промывочных растворов непосредственно на золоотвал, если рН осветленной воды золоотвала выше 8,0. В противном случае требуется предварительная нейтрализация промывочных растворов. В любом случае для предотвращения коррозии багерных насосов значение рН в системе ГЗУ в результате сброса не должно быть ниже 7,0. Экспериментальные данные подтверждают высокую адсорбционную способность золы по отношению к примесям второй и третьей групп.

В сбросных водах после консервации оборудования в больших количествах присутствуют гидразин, нитрит натрия и аммиак. Удобным способом разложения гидразина является обработка раствора хлорной известью или жидким хлором.

Для осуществления процесса очистки сбрасываемых консервирующих растворов используется такая схема. Отработавший раствор собирается в баке, емкость которого должна быть достаточной для приема сразу всего его количества. В качестве таких емкостей используют баки для приготовления консервирующих растворов. Если процесс очистки организуется в баке-нейтрализаторе объемом около 20 м3, то в него направляют также реагенты и пар. Для ускорения процесса очистки и продувки раствора воздухом с коэффициентом эжекции не менее 10 организуется циркуляция при помощи насоса производительностью 80…150 м3/ч и напором до 20 кгс/см

с установкой водо-воздушного эжектора.

Для разложения нитрита вводится серная кислота в количестве, на 10…15 \% большем стехиометрического. Установлено, что нитрит разлагается более интенсивно, если кислоту подавать в два приема: сначала 50 \% расчетного количества, а через 1 ч – остальную часть. Продувка воздухом содействует ускорению разложения нитрита и гидразина и отдувке аммиака. Повышение температуры позволяет сократить процесс разложения примесей и расход воздуха на отдувку газообразных компонентов.

Недостатком обезвреживания кислотой является образование вредных окислов азота, утилизация которых при данной схеме не проводится. Общий недостаток описанных выше процессов очистки промывочных и консервирующих растворов – это большой расход реагентов, который существенно увеличивает солесодержание сбра-сываемых потоков воды.

Последние 15…20 лет широкое внедрение находит экологичный способ предпусковых и эксплуатационных очисток без применения реагентов, так называемый метод горячей водо-парокисло-родной очистки и пассивации теплоэнергетического оборудования. Метод заключается в обработке поверхностей горячей водой высокой чистоты (с электрической проводимостью не более 1 мкСм/см) и паром с определенной температурой и скоростью и высокими концентрациями кислорода (до 2…3 г/дм3). В результате этой обработки удается удалить отложения (до 300 г/м2) и создать на металле прочную защитную пленку, которая имеет стойкость по отношению к агентам коррозии такую же, как нержавеющая сталь.

· Системы гидрозолоудаления

ВТИ предложен опытно-промышленный способ очистки воды ГЗУ от фтора, ванадия, мышьяка, а также фенолов, который состоит из двух стадий. На первой стадии осуществляется обработка воды известью и углекислотой от дымовых газов, что приводит к осаждению карбоната кальция из-за превышения пределов его растворимости. При этом частично снижается и содержание фтора. Вторая стадия заключается в обработке полученной жидкости сернокислым алюминием с дозировкой его около 70 мг/дм3 в пересчете на безводный продукт. Такая двухстадийная обработка позволяет снизить содержание фтора от 60 до 1,5 мг/дм3 и полностью освободить от ванадия, мышьяка и фенолов.

С появлением замкнутых систем ГЗУ поддержание оптимального солевого баланса системы стало весьма необходимым и выполняется различными способами исходя из реальных условий и экономических соображений. Где это возможно, осуществляется продувка системы в водные объекты с соблюдением необходимых условий, а также выпаривание продувочной воды при помощи специальных устройств. Для удаления отложений на трубопроводах и оборудовании ГЗУ воду обрабатывают дымовыми газами (очистка системы от отложений). Для предотвращения отложений дозируют комплексоны (ИОМС), которые при чрезвычайно малых количествах предотвращают отложения солей.

· Воды тракта топливоподач

Загрязненные воды в основном подвергают отстаиванию, а осветленную воду используют повторно. Осевшие примеси, шлам периодически удаляют, отвозя его на штабель угля.

· Очистка и повторное использование

поверхностного стока ТЭС

При выборе схем очистки и использовании поверхностного стока нужно учитывать водный баланс электростанции, специфику ее эксплуатации (т.е. необходимую степень очистки стока) и экономическую целесообразность различных вариантов очистки и использования этих вод.

Возникновение дождевого стока вызывает необходимость строительства регулирующей емкости. Схема включает: песколовку, разделительную камеру, водосливное устройство, регулирующую емкость и отстойник. Если технология использования поверхностного стока не позволяет ограничиться полученной глубиной очистки (отстаиванием), необходимо предусмотреть дополнительное фильтрование. Доочищать сток можно на фильтрах, загруженных полукоксом канско-ачинских углей (КАУ) или антрацитом.

В зависимости от условий эксплуатации ТЭС можно рассматривать следующие основные схемы применения поверхностного стока: в оборотной системе охлаждения, для подпитки станционных систем водопользования (на химводоочистке или в испарительной установке), совместно с внутристанционными нефтесодержащими стоками, для смыва золы и шлака в систему гидрозолоудаления.

При использовании поверхностного стока для подпитки оборотной системы охлаждения, несмотря на повышенную в отдельные периоды минерализацию стока, карбонатная щелочность относительно невысока, поэтому подача его в оборотную систему не приведет к заметному нарушению ее водно-химического режима.

На химводоочистку с предварительной очисткой поверхностный сток может быть подан после отстаивания; на водоочистках без предочистки требуется дополнительная фильтрация. Если на электростанции имеются сооружения для очистки нефтесодержащих сточных вод, то поверхностный сток может направляться на них. При наличии нефтеловушек сток только аккумулируется, при их отсутствии он направляется на очистные сооружения после отстаивания. При подаче поверхностных вод в систему гидрозолоудаления требуется только аккумулирование стока. Очистка и использование поверхностного стока в цикле электростанции позволяет уменьшить загрязнение водоемов и водопотребление ТЭС.

Загрязненные сточные воды ТЭС и их водоподготовительных установок состоят из различных по количеству и качеству потоков. В их состав входят (в порядке убывания количества):

а) сточные воды как оборотных, так и прямоточных (разомкнутых) систем гидрозолошлакоудаления (ГЗУ) электростанций, работающих на твердом топливе;

б) продувочные воды оборотных систем водоснабжения ТЭС, сбрасываемые постоянно;

в) сточные воды водоподготовительных (ВПУ) и конденсатоочистительных (КОУ) установок, сбрасываемые периодически, в том числе: пресные, зашламленные, засоленные, кислые, щелочные, замасленные и замазученные воды главного корпуса, мазутного и трансформаторного хозяйства ТЭС;

г) продувочные воды паровых котлов, испарителей и паропреобразователей, сбрасываемые постоянно;

д) замасленные и зашламленные снеговые и дождевые стоки с территории ТЭС;

е) обмывочные воды РВП и поверхностей нагрева котлов (стоки от РВП котлов, работающих на мазуте, сбрасываются 1-2 раза в месяц и реже, а от других поверхностей и при сжигании твердых топлив - чаще);

ж) замасленные, загрязненные внешние конденсаты, пригодные после их очистки для питания паровых котлов-испарителей;

з) сбросные, отработанные, концентрированные, моющие кислые и щелочные растворы и отмывочные воды после химических промывок и консервации паровых котлов, конденсаторов, подогревателей и другого оборудования (сбрасываются несколько раз в год, обычно летом);

и) воды после гидроуборки топливных цехов и других помещений ТЭС (сбрасываются обычно 1 раз в сутки в смену, чаще днем).

Взаимосвязь между свежими и сточными водами тэс

На ТЭС должны существовать единая система водоснабжения - водоотведения, при которой сбросные воды одного типа непосредственно или после некоторой обработки могли бы быть исходными для других потребителей той же ТЭС (или внешних). Например, сбросные воды прямоточных систем водоснабжения после конденсаторов, а также продувочные воды оборотных систем при небольшом (в 1,3-1,5 раза) их упаривании, а также загрязненным нефтью сточные воды ТЭЦ могут являться исходной водой ВПУ, равно как и последние порции отмывочной воды обессоливающих фильтров.

Все возвращаемые в «голову» процесса сбросные воды не должны нуждаться в обработке реагентами на предочистке, в случае же необходимости обработки известью, содой и коагулянтом они должны перемешиваться (усредняться) в сборном баке. Вместимость этого бака должна быть рассчитана на сбор 50 % всех сточных вод ВПУ за сутки, в том числе 30 % сточных вод ионитной части. Нежелательно смешивать прозрачные мягкие и шламовые сбросные воды. Следует учитывать, что не менее 50 % всех сбросных вод ВПУ, в том числе все сточные воды предочисток всех типов, включая сбросные воды после взрыхления ионитных фильтров пресной водой, последние порции отмывочной воды ионитных фильтров обессоливающих установок, а также воды, сбрасываемые при опорожнении осветлительных и ионитных фильтров, имеют солесодержание, жесткость, щелочность и другие показатели такие же или даже лучшие, чем предочищенная и тем более исходная вода, и поэтому могут быть без дополнительной обработки реагентами возвращены в «голову» процесса, в осветлители или, что еще лучше, на осветлительные, Н- или Na-катионитные фильтры.

Кроме единой общей канализации для всех видов пресных вод ВПУ должны иметься и отдельные сбросные каналы для засоленных и кислых вод (щелочные должны полностью использоваться в цикле, в том числе для нейтрализации). Эти воды нужно собирать в специальные баки-котлованы.

Ввиду периодической работы земляных котлованов (преимущественно в летнее время) для моющих растворов и отмывочных вод котлов после химических промывок, после установок для нейтрализации этих вод и обмывочных вод РВП следует предусматривать возможность подачи на эти сооружения различных сбрасываемых кислых, щелочных и засоленных вод ВПУ для совместной или попеременной нейтрализации, отстаивания, окисления и передачи их в систему ГЗУ или другим потребителям. При получении из обмывочных вод РВП окиси ванадия эти воды до выделения ванадия с другими не смешивают. При этом нейтрализованная установка или, по крайней мере, ее насосы и арматура должны размещаться в утепленном помещении.

Засоленные воды после Na-катионитных фильтров делят на три части по их качеству и используют по-разному.

Концентрированный отработавший раствор соли, содержащий 60-80 % удаленной жесткости при 50-100 %-ном избытке соли и составляющий 20-30 % общего объема засоленных вод, должен направляться в систему ГЗУ или на умягчение с возвратом на ВПУ, или на выпаривание с получением твердых солей Са, Mg, Na, CI, S0 4 , или в земляные котлованы, откуда после смешения с другими стоками, разбавления и совместной нейтрализации его можно направлять в канализацию, на нужды ТЭС или внешним потребителям. Вторая часть отработавшего раствора, содержащая 20-30 % всей удаляемой жесткости при 200-1000 %-ном избытке соли, должна собираться в бак для повторного использования. Третья, последняя часть - отмывочная вода - собирается в другой бак для использования при взрыхлении, если ее еще нельзя направить в «голову» процесса или для первой стадии отмывки.

Концентрированные засоленные воды после Na-катионитных фильтров и нейтрализованные воды Н-катионитных и анионитных фильтров (первые порции) можно подавать в системы ГЗУ для транспортировки золы и шлака. Накопление в воде ГЗУ Са(ОН) 2 , CaS0 4 приводит к насыщению и пересыщению воды этими соединениями с выделением их в твердом виде на стенках труб и оборудования. Масла и нефтепродукты из сточных вод, оставшиеся в них после нефтеловушек, при сбросе их в систему ГЗУ сорбируются золой и шлаком. Однако при большом содержании нефтепродуктов они могут сорбироваться не полностью и находиться на золоотвалах в виде плавающих пленок. Для предотвращения попадания их с сбрасываемой водой в водоемы общего пользования на золоотвалах сооружаются приемные колодцы для сбросных вод с затворами («запанями») для задержки плавающих нефтепродуктов.

Мягкие щелочные, иногда горячие продувочные воды паровых котлов, испарителей, паропреобразователей после использования их выпара и теплоты, а также мягкие щелочные отмывочные воды анионитных фильтров могут служить питательной водой менее требовательных паровых котлов, а также (при отсутствии в теплофикационной системе теплообменников с латунными трубами) подпиточной водой закрытых систем теплоснабжения. При содержании в них фосфатов Na 3 P0 4 в количестве более 50 % общего солесодержания их можно использовать для стабилизационной обработки оборотной воды, а также для растворения соли с целью умягчения ее раствора содержащимися в продувочной воде щелочами и фосфатами.

При выборе способа обработки засоленных, кислых или щелочных вод после регенерации ионитных фильтров следует учитывать резкие колебания концентраций растворимых веществ в этих водах: максимальные концентрации в первых 10-20 % общего объема сбрасываемой воды (собственно отработанные растворы) и минимальные концентрации в последних 60-80% (отмывочные воды). Такие же колебания концентрации отмечаются и в отработанных растворах и отмывочных водах после химических промывок паровых и водогрейных котлов и других аппаратов.

В то время как отмывочные воды с небольшой концентрацией растворимых веществ сравнительно легко могут быть нейтрализованы (взаимно), окислены и вообще очищены от удаляемых загрязнений, очистка большого объема более концентрированной смеси отработанных растворов и отмывочных вод требует больших объемов оборудования, значительных затрат труда, средств и времени.

Отработанные щелочные растворы и отмывочные воды после регенерации анионитных фильтров (кроме первой порции раствора после фильтров 1-й степени) должны быть повторно использованы внутри ВПУ. Первая же порция направляется на нейтрализацию кислых сбросных вод ВПУ, и ТЭС.

Схема бессточной ТЭС

На рис. 13.18 в качестве примера приведена схема бессточного водоснабжения ТЭС, работающей на угле. Зола и шлак из котлов подаются на золоотвал 1. Осветленная вода 2 с золоотвала возвращается в котлы. При необходимости часть этой воды подвергается очистке на установке локальной очистки 3. Образующиеся при этом твердые отходы 4 подаются на золоотвал 1. Частично обезвоженные зола и шлак утилизируются. Возможно также сухое шлакозолоудаление, что упрощает утилизацию золы и шлака.

Дымовые газы 5 котлов проходят очистку в установке десульфуризации газов 6. Образующиеся сточные воды очищаются по технологии с использованием реагентов (извести, полиэлектролитов). Очищенная вода возвращается в систему газоочистки, а образовавшийся гипсовый шлам вывозится на переработку.

Сточные воды 7, образующиеся при химических промывках, консервации оборудования и обмывке конвективных поверхностей нагрева котлов, подаются в соответствующие установки по очистки 8, где обрабатываются с использованием реагентов по одной из описанных ранее технологий. Основная часть очищенной воды 9 используется повторно. Ванадий содержащий шлам 10 вывозится на утилизацию. Осадки 11, образовавшиеся при очистке сточных вод, вместе с частью воды подаются на золоотвал 1 либо складируются в специальных шламонакопителях. В то же время, как показал опыт работы Саранской ТЭЦ-2, при подпитке котлов дистиллятом МИУ эксплуатационная очистка котлов практически не нужна. Следовательно, сточные воды такого типа будут практически, отсутствовать либо их количество будет незначительным. Аналогичным образом утилизируется вода от консервации оборудования, либо применяются методы консервации, не сопровождающиеся образованием сточных вод. Часть этих сточных вод после обезвреживания может равномерно подаваться на ВПУ для обработки совместно с продувочными водами 12 СОО (системы оборотного охлаждения).

Исходная вода непосредственно либо после соответствующей обработки на ВПУ подается в СОО. Необходимость обработки и ее вид зависят от конкретных условий работы ТЭС, в том числе от состава исходной воды, необходимой степени ее упаривания в СОО, типа градирен и др. С целью сократить потери воды в СОО градирни могут быть оборудованы каплеуловителями либо применены полусухие или сухие градирни. Вспомогательное оборудование 13, при охлаждении которого возможно загрязнение оборотной воды нефтепродуктами и маслами, выделено в самостоятельную систему. Вода этой системы подвергается локальной очисткеот нефтепродуктов и масла в узле 14 и охлаждается в теплообменниках 15 водой 16 из основного контура СОО охлаждения конденсаторов турбин. Часть этой воды 17 используется для восполнения потерь в контуре охлаждения вспомогательного оборудования 13. Выделенные в узле 14 масло- и нефтепродукты 18 подаются на сжигание в котлы.

Часть воды 12, подогретой в теплообменниках 15, направляется на ВПУ, а ее избыток 19 - на охлаждение в градирни.

Продувочная вода 12 СОО проходит обработку на ВПУ по технологии, с использованием реагентов. Часть умягченной воды 20 подается на подпитку закрытой теплосети перед подогревателями 21 сетевой воды. При необходимости часть умягченной воды может быть возвращена в СОО. Необходимое количество умягченной воды 22 направляется в МИУ. Сюда же подаются продувки 23 котлов, а также конденсат 24 с мазутного хозяйства непосредственно либо после очистки в узле 25. Выделенные из конденсата нефтепродукты 18 сжигаются в котлах.

Пар 26 первой- ступени МИУ подается на производство и в мазутное хозяйство, а полученный дистиллят 27 поступает на подпитку котлов. Сюда же подается конденсат с производства и конденсат сетевых подогревателей 21 после обработки в конденсатоочистке (КО). Сточные воды 28 КО и блочной обессоливающей установки БОУ используются в ВПУ. Сюда же подается продувочная вода 29 МИУ для приготовления регенерационного раствора по описанной ранее технологии.

Ливневые стоки с территории ТЭС собираются в накопителе ливне стоков 30 и после локальной очистки в узле 31 также подаются в СОО либо на ВПУ. Выделенные из воды нефте- и маслопродукты 18 сжигаются в котлах. В СОО могут также подаваться грунтовые воды без или после соответствующей обработки.

При работе по описанной технологии в значительных количествах будет образовываться известковый и гипсовый шлам.

Перспективны два направления создания бессточных ТЭС:

Разработка и внедрение экономичных и экологически совершенных инновационных технологий подготовки добавочной воды парогенераторов и подпиточной воды теплосети;

Разработка и внедрение инновационных нанотехнологий максимально полной переработки и утилизации образующихся сточных вод с получением и повторным использованием в цикле станции исходных химических реагентов.

Рисунок 13. Схема ТЭС с высокими экологическими показателями

За рубежом (особенно в США) в связи с тем, что лицензия на работу электростанции выдается зачастую при условии полной бессточности, схемы водоподготовки и очистки стоков взаимоувязаны и представляют собой комбинацию мембранных методов, ионитного и термического обессоливания. Так, например, технология подготовки воды на электростанции Норт-Лейк (Техас, США) включает в себя две параллельно работающие системы: коагуляция сульфатом железа, многослойная фильтрация, далее обратный осмос, двойной ионный обмен, ионный обмен в смешанном слое или электродиализ, двойной ионный обмен, ионный обмен в смешанном слое.

Подготовка воды на ядерной станции Брайдвуд (Иллинойс, США) представляет собой коагуляцию в присутствии хлорирующего агента, известкового молока и флокулянта, фильтрацию на песчаном или активноугольном фильтрах, ультрафильтрацию, электродиализ, обратный осмос, катионообменный слой, анионообменный слой, смешанный слой.

Анализ технологий, реализуемых для переработки высокоминерализованных сточных вод на отечественных электростанциях, позволяет утверждать, что полная утилизация осуществима только путем испарения в различных типах испарительных установок. При этом получают в качестве продуктов, пригодных к дальнейшей реализации – шлам осветлителей (в основном – карбонат кальция), шлам на гипсовой основе (в основном – двухводный сульфат кальция), хлорид натрия, сульфат натрия.

На Казанской ТЭЦ-3 создан замкнутый цикл водопотребления путем комплексной переработки высокоминерализованных сточных вод термообессоливающего комплекса с получением регенерационного раствора и гипса в виде товарного продукта. При работе по этой схеме образуется избыточное количество продувочной воды испарительной установки в объеме около 1 м³/ч. Продувка представляет собой концентрированный раствор, в котором в основном содержатся катионы натрия и сульфат-ионы.

Рисунок 14. Технология переработки стоков термообессоливающего комплекса Казанской ТЭЦ-3.

1, 4 – осветлители; 2, 5 – баки осветленной воды; 3, 6 – механические фильтры; 7 – натрий-катионитовые фильтры; 8 – бак, химочищенной воды; 9 – химочищенная вода на подпитку теплосети; 10 – бак концентрата испарительной установки; 11 – бак-реактор; 12, 13 – баки различного назначения; 14 – бак осветленного раствора для регенерации (после подкисления и фильтрации) натрий-катионитовых фильтров; 15 – кристаллизатор; 16 – кристаллизатор-нейтрализатор; 17 – термохимический умягчитель; 19 – бункер; 20 – приямок; 21 – избыток продувки испарителя; 22 – фильтр с активноугольной загрузкой; 23 – электромембранная установка (ЭМУ).

Разработана инновационная нанотехнология переработки избытка продувочной воды термообессоливающего комплекса на базе электромембранной установки с получением щелочи и умягченной воды. Сущность электромембранного метода заключается в направленном переносе диссоциированных ионов (растворенных в воде солей) под влиянием электрического поля через селективно проницаемые ионообменные мембраны.