Способы и виды экранирования. Виды экранирования

Защита информации от утечки через ПЭМИН осуществляется с применением пассивных и активных методов и средств.

Пассивные методы защиты информации направлены на:

  • ослабление побочных электромагнитных излучений (информационных сигналов) ОТСС на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • ослабление наводок побочных электромагнитных излучений в посторонних проводниках и соединительных линиях, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • исключение или ослабление просачивания информационных сигналов в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

  • создание маскирующих пространственных электромагнитных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала;
  • создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала.

Рассмотрим более подробно наиболее распространенные методы пассивной и активной защиты от ПЭМИН.

Экранирование технических средств

Как известно из предыдущих лекций, при функционировании технических средств обработки, приема, хранения и передачи информации (ТСПИ) создаются побочные токи и поля, которые могут быть использованы злоумышленником для съема информации. Подводя итог, можно сделать вывод, что между двумя токопроводящими элементами могут возникнуть следующие виды связи:

  • через электрическое поле;
  • через магнитное поле;
  • через электромагнитное поле;
  • через соединительные провода.

Основной характеристикой поля является его напряженность. Для электрического и магнитного полей в свободном пространстве она обратно пропорциональна квадрату расстояния от источника сигнала. Напряженность электромагнитного поля обратно пропорциональна первой степени расстояния. Напряжение на конце проводной или волновой линии с расстоянием падает медленно. Следовательно, на малом расстоянии от источника сигнала имеют место все четыре вида связи. По мере увеличения расстояния сначала исчезают электрическое и магнитное поля, затем - электромагнитное поле и на очень большом расстоянии влияет только связь по проводам и волноводам.

Одним из наиболее эффективных пассивных методов защиты от ПЭМИ является экранирование . Экранирование - локализация электромагнитной энергии в определенном пространстве за счет ограничения распространения ее всеми возможными способами.

Различают три вида экранирования :

  • электростатическое;
  • магнитостатическое;
  • электромагнитное.

Электростатическое экранирование заключается в замыкании электростатического поля на поверхность металлического экрана и отводе электрических зарядов на землю (на корпус прибора) с помощью контура заземления. Последний должен иметь сопротивление не больше 4 Ом. Применение металлических экранов весьма эффективно и позволяет полностью устранить влияние электростатического поля. При правильном использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника сигнала в ε раз, где ε - относительная диэлектрическая проницаемость материала экрана.

Эффективность применения экрана во многом зависит от качества соединения корпуса ТСПИ с экраном. Здесь особое значение имеет отсутствие соединительных проводов между частями экрана и корпусом ТСПИ.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом :

  • конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;
  • в области низких частот (при глубине проникновения (δ) больше толщины (d), т.е. при δ > d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;
  • в области высоких частот (при d < δ) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

При экранировании магнитных полей различают низкочастотные магнитные поля и высокочастотные. используется для наводок низкой частоты в диапазоне от 0 до 3…10 кГц. Низкочастотные магнитные поля шунтируются экраном за счет направленности силовых линий вдоль стенок экрана.

Рассмотрим более подробно принцип магнитостатического экранирования .

Вокруг элемента (пусть это будет виток) с постоянным током существует магнитное поле напряженностью H 0 , которое необходимо экранировать. Для этого окружим виток замкнутым экраном, магнитная проницаемость µ которого больше единицы. Экран намагнитится, в результате чего создастся вторичное поле, которое ослабит первичное поле вне экрана. То есть силовые линии поля витка, встречая экран, обладающий меньшим магнитным сопротивлением, чем воздух, стремятся пройти по стенкам экрана и в меньшем количестве доходят до пространства вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана (Рисунок 16.1) .


Рис. 16.1.

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим :

  • магнитная проницаемость µ материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например, пермаллой);
  • увеличение толщины стенок экрана приводит к повышению эффективности экранирования , однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;
  • стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;
  • заземление экрана не влияет на эффективность магнитостатического экранирования .

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Электромагнитное экранирование применяется на высоких частотах. Действие такого экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданными вихревыми токами обратного напряжения. Этот способ экранирования может ослаблять как магнитные, так и электрические поля, поэтому называется электромагнитным.

Упрощенная физическая сущность электромагнитного экранирования сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках – токи, поля которых во внешнем пространстве противоположны полям источника и примерно равны ему по интенсивности. Два поля компенсируют друг друга.

С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн в его металлической толще. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран и материала экрана. Чем больше это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования определяемый отражением электромагнитных волн .

Выбор материала для экрана зависит от многих условий. Металлические материалы выбирают по следующим критериям и условиям:

  • необходимость достижения определенной величины ослабления электромагнитного поля при наличии ограничения размеров экрана и его влияния на объект защиты;
  • устойчивость и прочность металла как материала.

Среди наиболее распространенных металлов для изготовления экранов можно назвать сталь, медь, алюминий, латунь. Популярность этих материалов в первую очередь обусловлена достаточно высокой эффективностью экранирования . Сталь популярна также вследствие возможности использования сварки при монтаже экрана.

К недостаткам листовых металлических экранов можно отнести высокую стоимость, большой вес, крупные габариты и сложность монтажа. Этих недостатков лишены металлические сетки . Они легче, проще в изготовлении и размещении, дешевле. Основными параметрами сетки является ее шаг, равный расстоянию между соседними центрами проволоки, радиус проволоки и удельная проводимость материала сетки. К недостаткам металлических сеток относят, прежде всего, высокий износ по сравнению с листовыми экранами.

Для экранирования также применяются фольговые материалы . К ним относятся электрически тонкие материалы толщиной 0,01…0,05 мм. Фольговые материалы в основном производятся из диамагнитных материалов – алюминий, латунь, цинк.

Перспективным направлением в области экранирования является применение токопроводящих красок , так как они дешевые, не требуют работ по монтажу, просты в применении. Токопроводящие краски создаются на основе диэлектрического пленкообразующего материала с добавлением в него проводящих составляющих, пластификатора и отвердителя. В качестве токопроводящих пигментов используют коллоидное серебро, графит, сажу, оксиды металлов, порошковую медь, алюминий.

Токопроводящие краски лишены недостатков листовых экранов и механических решеток, так как достаточно устойчивы в условиях резких климатических изменений и просты в эксплуатации.

Следует отметить, что экранироваться могут не только отдельные ТСПИ, но и помещения в целом. В неэкранированных помещениях функции экрана частично выполняют железобетонные составляющие в стенах. В окнах и дверях их нет, поэтому они более уязвимы.

При экранировании помещений используются: листовая сталь толщиной до 2 мм, стальная (медная, латунная) сетка с ячейкой до 2,5 мм. В защищенных помещениях экранируются двери и окна. Окна экранируются сеткой, металлизированными шторами, металлизацией стекол и оклеиванием их токопроводящими пленками. Двери выполняются из стали или покрываются токопроводящими материалами (стальной лист, металлическая сетка). Особое внимание обращается на наличие электрического контакта токопроводящих слоев двери и стен по всему периметру дверного проема. При экранировании полей недопустимо наличие зазоров, щелей в экране. Размер ячейки сетки должен быть не более 0,1 длины волны излучения.

В защищенной ПЭВМ, например, экранируются блоки управления электронно-лучевой трубкой, корпус выполняется из стали или металлизируется изнутри, экран монитора покрывается токопроводящей заземленной пленкой и (или) защищается металлической сеткой.

Следует отметить, что помимо функции защиты от утечки информации через ПЭМИН, экранирование может снизить вредное воздействие электромагнитного излучения на людей и уровень шумов при работе ТСПИ.

11 606 0 Здравствуйте! В этом статье мы рассмотрим современную процедуру – экранирование волос. После нее волосы выглядят ухоженными и насыщаются полезными веществами. Ниже мы разберемся, как именно ее делают и насколько она эффективна.

Что такое экранирование волос

Экранирование – это современная лечебная процедура, которая улучшает состояние волос изнутри. Во время процедуры используются средства, которые создают на поверхности защитную пленку. Поврежденные волосы восстанавливаются. Внутри волоска нормализуется водный баланс и происходит обогащение витаминами и микроэлементами. Защитный слой запечатывает вещества в локонах, поэтому с каждой процедурой их накапливается все больше.

Экранирование поврежденных волос приносит большую пользу, так как оно способствует их восстановлению. Средства производятся на основе соевого белка, аминокислот и различных растительных компонентов.

Процедура осуществляется в 3 этапа – для каждого используется свой компонент:

  1. Выравнивание и увлажнение.
  2. Восстановление и укрепление.
  3. Защита и блеск.

Хотя о процедуре стало известно сравнительно недавно, сегодня она приобрела большую популярность. Вы можете сделать экранирование сразу после окрашивания волос или спустя некоторое время. Оно подходит и для натуральных проблемных локонов, которые никогда не подвергались воздействию краски.

Экранирование волос: разновидности

В салоне вы сможете выбрать один из трех видов экранирования:

  • Цветное. В этом случае пряди обрабатываются препаратом с красящими пигментами. Они позволяют значительно изменить цвет локонов без использования перекиси водорода и щелочи. Такой вид окрашивания абсолютно безвредный, а, наоборот, оздоравливающий.
  • Бесцветное . Эффект от процедуры похож на предыдущий с одним отличием – цвет волос останется неизменным.
  • Спа-экранирование . Если вы хотите максимально расслабиться во время лечения локонов, то выбирайте этот вид. Пока мастер неторопливо будет выполнять свою работу, вы сможете насладиться массажем головы и приятными ароматами от используемых средств.

Плюсы и минусы

После процедуры ваши волосы станут выглядеть значительно лучше. Это выражается в следующих особенностях:

  • поверхность волосков блестит и сияет;
  • структура выравнивается и улучшается;
  • предотвращается сечение кончиков;
  • увеличивается объем шевелюры в 1,5 раза;
  • цвет становится ярким и насыщенным;
  • волоски уплотняются;
  • укладка и расчесывание осуществляется намного легче;
  • создается защитный барьер от негативного воздействия извне;

Помимо этого при каждой процедуре накапливается положительный эффект. В средствах для экранирования не содержится вредных компонентов, поэтому они мягко воздействуют на волосы. После сеанса они будут источать приятный аромат.

Не у всех женщин отмечается только положительный эффект от процедуры. Некоторые могут столкнуться со следующими негативными последствиями:

  • волосы становятся жесткими и тяжелыми;
  • после мытья головы наблюдается сильная электризация;
  • при повышенной сальности волос, они приобретут вид «сосулек»;
  • на здоровых локонах эффект не наблюдается;
  • при разовых сеансах волосы улучшаются ненадолго, так как требуется прохождение целого курса.

Экранирование подходит не для всех типов и состояния волос, поэтому нет смысла делать процедуру при отсутствии показаний.

Показания к процедуре

  1. Секущиеся, ослабленные и сухие локоны.
  2. Частое использование приборов для укладки.
  3. Волосы после окрашивания, химии и выпрямления.
  4. Блеклый и тусклый цвет шевелюры.
  5. Часто пребывание в неблагоприятной среде.

Как делают экранирование в салоне?

Прежде чем вы решите, поможет ли вам такая процедура, давайте рассмотрим, как ее делают специалисты:

  • Шаг 1. Сначала мастер помоет голову с использованием специального шампуня и даст локонам подсохнуть естественным способом.
  • Шаг 2. Затем он на каждую прядь нанесет средства с активными веществами, действия которых направлены на защиту, увлажнение и питание. Количество препаратов может разниться в зависимости от салона, но обычно их не менее трех.
  • Шаг 3. Когда вещества проникнут внутрь волосков, вашу голову опять помоют и обработают экранирующей смесью. Если предполагается окрашивание волос, то в ней будут присутствовать пигменты.
  • Шаг 4. Через полчаса мастер высушит ваши пряди феном. Это нужно для ускорения проникновения последнего средства внутрь волосков.
  • Шаг 5. Полученный результат фиксируют специальным бальзамом. Далее мастер проконсультирует вас по поводу правильного ухода.

Что нужно для домашнего экранирования?

Процедуру экранирования вы можете сделать самостоятельно. Для этого нужно купить средства для экранирования волос. Всего для домашнего экранирования потребуется:

  • набор для экранирования;
  • расческа;
  • перчатки;
  • полотенце.

Инструкция в каждом наборе имеет подробное описание процедуры. Даже если раньше вы не сталкивались с подобными манипуляциями, вы сможете разобраться с тонкостями проведения экранирования.

Постарайтесь приобрести набор для экранирования волос высокого качества от надежного бренда. После нанесения дешевого средства можно испортить волосы, после чего их сможет восстановить только профессионал.

Линейки некоторых марок предполагают четкое разделение наборов в зависимости от цвета волос, поэтому экранирование блондированных волос можно проводить без опасений. Здесь подходит экранирование волос q3.

Наиболее популярны, следующие наборы для экранирования волос от фирмы Эстель:

  • Q3 Эстель НАБОР для процедуры Экранирования поврежденных волос ESTEL
  • Estel, Набор Q3 Blond для экранирования блондированных волос

Домашнее экранирование волос: инструкция

Как делать экранирование самостоятельно:

  • Шаг 1. Помойте локоны теплой водой и шампунем из набора.
  • Шаг 2. Хорошенько вытрите волосы полотенцем без использования фена.
  • Шаг 3. Нанесите на пряди бальзам или маску из набора. Средство используют для питания локонов и подготовки к впитыванию целебных веществ. Оно делает каждый волосок более восприимчивым к компонентам препаратов, приподнимая чешуйки.
  • Шаг 4. Выждите время, указанное в инструкции и помойте голову.
  • Шаг 5. Теперь предстоит нанести массу для экранирования. Тщательно промажьте каждую прядь и спрячьте локоны под целлофан. Утеплите голову полотенцем.
  • Шаг 6. Спустя полчаса помойте шевелюру и высушите феном.
  • Шаг 7. В завершение нанесите на волосы средство для закрепления и не смывайте.

Порядок проведения процедуры и видео-отзыв с результатами экранирования волос в домашних условиях.

Периодичность процедур

Эффект вы заметите после первой процедуры, но он быстро исчезнет, если сеансы экранирования будут приостановлены. Уже при третьем нанесении средств локоны приобретут среднюю степень защищенности, а при пятом – высшую.

Ухоженный вид после каждой процедуры сохраняется в течение 2-3 недель, поэтому периодичность сеансов зависит от того, сколько держится эффект, и составляет 1 раз в 14 дней.

Через полгода вы сможете повторить курс.

Когда лучше делать экранирование

Рекомендуется экранировать волосы летом. Невидимая пленка станет отличной защитой от палящего солнца и соленой морской воды, если вы собираетесь отдыхать на море. Эти факторы негативно сказываются на состоянии локонов.

В средствах для экранирования содержатся ультрафиолетовые фильтры, которые предохраняют волосы точно так же, как крема от солнца защищают кожу. Пленка предотвращает цвет от выгорания.

Уход за волосами после процедуры

Если вы хотите, чтобы эффект сохранялся длительное время, то за волосами нужно правильно ухаживать. Рекомендации заключаются в следующем:

  • мойте шевелюру бесщелочными шампунями той же марки, что и был набор для экранирования;
  • откажитесь от спиртосодержащих масок;
  • используйте составы от электризации волос;
  • не скрабируйте кожу головы;
  • после мытья волос не нужно их выжимать и интенсивно тереть полотенцем;
  • старайтесь мыть голову как можно реже, так как частые процедуры приведут к быстрому вымыванию веществ.

Противопоказания

  1. Толстые и густые волосы.
  2. Повышенная жирность локонов.
  3. Заболевания кожи.
  4. Раны и ссадины на голове.
  5. Аллергия на компоненты.

Что лучше: ламинирование или экранирование волос

Наверняка, вам показалось, что экранирование ничем не отличается от ламинирования, но это не так. – это косметическая процедура, которая только маскирует повреждения и защищает от внешнего воздействия. Она не производит лечебный эффект.

Совершенно различается и технология нанесения составов. Специалисты сходятся во мнении о большой эффективности проведения двух процедур одновременно. Это обосновывается следующими тезисами:

  1. Волосы будут вдвойне защищенными, поэтому никакие агрессивные условия среды для них не страшны.
  2. Даже если один из составов начнет смываться, то другой поддержит прекрасный вид локонов – гладкость, силу и упругость.

С чем еще можно совместить экранирование?

Кроме ламинирования вы можете сочетать экранирование со следующими процедурами:

  • Полировка . Технология проста – отдельные прядки волос выравнивают и обрабатывают машинкой. Она удаляет секущиеся и поврежденные волосы без изменения длины локонов. Процедура может производиться отдельно, но полировка и экранирование волос одновременно помогут быстро восстановить проблемные локоны.
  • . Во время процедуры происходит внедрение натурального белка — кератина, который отвечает за строительство волосков. Это осуществляется под высокой температурой, воздействие которой хорошо сгладит экранирование.

Экранирование – это один из многочисленных способов сделать волосы красивыми и здоровыми. Наборы профессиональных средств разработаны таким образом, что вы легко сможете использовать их в домашних условиях. Как часто делать процедуру в этом случае вы определите сами.

Правила данного раздела, применимы для защищенных кабелей или кабелей с экранированными элементами. Даются только базовые рекомендации. Процедуры, необходимые для заземления экранов с целью обеспечения электрической безопасности и электромагнитной совместимости (ЭМС), определяются национальными и местными нормативами. Качество систем зависит от квалификации работников и, как правило, требует специальной методики монтажа. Неправильное экранирование может снизить производительность и уровень безопасности системы.

10.1. Электромагнитная совместимость

Экраны (кабелей и каждой пары - А.В.) призваны улучшить ЭМС. Для этого их необходимо подключить на массу. Эффективность экранирования достигается наличием экрана для каждого кабельного элемента (витой пары - А.В.) и соответствием переходного волнового сопротивления 1) экранов параметрам подразделов 8 и . Экран должен быть непрерывным для всего канала. Этому требованию должны отвечать фиксированные кабели, входящие в состав СКС, а также абонентские и сетевые кабели, используемые для создания канала. Кабели (включая абонентские и сетевые) следует тщательно выбирать, правильно устанавливать и соединять. Особое внимание следует уделять выбору разъемов и правилам их монтажа.

Примечание
Издание международного стандарта IEC 603–7 1990 года не включает рекомендации по монтажу защитных экранов. Очередная редакция стандарта будет включать спецификации защитного экранирования. Установка защищенных элементов не гарантирует соответствия требованиям ЭМС .

Малое переходное волновое сопротивление кабелей и разъемов является не единственным требованием. Кабели следует монтировать на коннекторы розеток и панелей с учетом непрерывности экрана. Методы монтажа зависят от типа и конструкции кабелей и разъемов. В инструкции производителей следует включать информацию, позволяющую выполнять эти требования. Методики обеспечения защиты класса В и выше находятся на этапе изучения.

10.2. Заземление

Стандарт требует соблюдения правил безопасности, связанных с заземлением экранов кабелей и других металлических элементов кабельных систем.

Соединения должны выполняться в соответствии с требованиями электрических нормативов. Экраны всех кабелей должны быть подключены к телекоммуникационной системе заземления. Экран должен быть постоянным и непрерывным. Экран кабелей должен обеспечивать непрерывный путь к «земле» во всех частях экранированной кабельной системы. Для снижения волнового сопротивления рекомендуется соединять металлические кабелепроводы с проводниками системы заземления, проходящими в них, на обоих концах кабелепровода. Стойки активного оборудования следует соединять с электродом заземления, который используется для защиты систем подачи электропитания в здание. Все электроды заземления различных систем в здании должны быть соединены в одной точке для уменьшения влияния разности потенциалов земли.

Система заземления здания должна соответствовать ограничениям на разность потенциалов в 1 BB и на сопротивление между любыми двумя элементами системы заземления.

Если вышеупомянутое требование не может быть выполнено, для уменьшения риска возникновения сильных блуждающих токов в телекоммуникационной системе следует использовать волоконно-оптический кабель.

Рекомендация соединять стойки активного оборудования с электродом заземления некорректна. Оборудование чаще всего располагают на одних стойках / в тех же шкафах, что и панели. Оборудование и панели подключают к телекоммуникационной системе заземления, центральный терминал которой соединяют с главным электрическим терминалом, который, в свою очередь, соединен с землей с помощью электродов.

Положения данного раздела относятся только к защищенным кабелям (150 ом), которые исключены из второго издания ISO/IEC 11801 . Экранированные и неэкранированные системы не рассматриваются. Рекомендации носят самый общий характер и не позволяют создавать систему экранирования и заземления без использования других документов. Наиболее полным является стандарт TIA/EIA-607 , «Требования по заземлению и электрическим соединениям телекоммуникационных систем коммерческих зданий». Но даже он оставляет часть системы телекоммуникационного заземления на усмотрение производителей.

Требования и параметры систем заземления и экранирования, включающие TIA/EIA-607 (от центрального терминала до телекоммуникационной шины заземления) и рекомендации ITT NSS (от шины до панелей, кабелей и разъемов) можно получить на семинарах для заказчиков и авторизованных курсах для проектировщиков СКС - А.В.

Защита информации от утечки через ПЭМИН осуществляется с применением пассивных и активных методов и средств.

Пассивные методы защиты информации направлены на:

  • ослабление побочных электромагнитных излучений (информационных сигналов) ОТСС на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • ослабление наводок побочных электромагнитных излучений в посторонних проводниках и соединительных линиях, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • исключение или ослабление просачивания информационных сигналов в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

  • создание маскирующих пространственных электромагнитных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала;
  • создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала.

Рассмотрим более подробно наиболее распространенные методы пассивной и активной защиты от ПЭМИН.

Экранирование технических средств

Как известно из предыдущих лекций, при функционировании технических средств обработки, приема, хранения и передачи информации (ТСПИ) создаются побочные токи и поля, которые могут быть использованы злоумышленником для съема информации. Подводя итог, можно сделать вывод, что между двумя токопроводящими элементами могут возникнуть следующие виды связи:

  • через электрическое поле;
  • через магнитное поле;
  • через электромагнитное поле;
  • через соединительные провода.

Основной характеристикой поля является его напряженность. Для электрического и магнитного полей в свободном пространстве она обратно пропорциональна квадрату расстояния от источника сигнала. Напряженность электромагнитного поля обратно пропорциональна первой степени расстояния. Напряжение на конце проводной или волновой линии с расстоянием падает медленно. Следовательно, на малом расстоянии от источника сигнала имеют место все четыре вида связи. По мере увеличения расстояния сначала исчезают электрическое и магнитное поля, затем - электромагнитное поле и на очень большом расстоянии влияет только связь по проводам и волноводам.

Одним из наиболее эффективных пассивных методов защиты от ПЭМИ является экранирование . Экранирование - локализация электромагнитной энергии в определенном пространстве за счет ограничения распространения ее всеми возможными способами.

Различают три вида экранирования :

  • электростатическое;
  • магнитостатическое;
  • электромагнитное.

Электростатическое экранирование заключается в замыкании электростатического поля на поверхность металлического экрана и отводе электрических зарядов на землю (на корпус прибора) с помощью контура заземления. Последний должен иметь сопротивление не больше 4 Ом. Применение металлических экранов весьма эффективно и позволяет полностью устранить влияние электростатического поля. При правильном использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника сигнала в ε раз, где ε - относительная диэлектрическая проницаемость материала экрана.

Эффективность применения экрана во многом зависит от качества соединения корпуса ТСПИ с экраном. Здесь особое значение имеет отсутствие соединительных проводов между частями экрана и корпусом ТСПИ.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом :

  • конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;
  • в области низких частот (при глубине проникновения (δ) больше толщины (d), т.е. при δ > d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;
  • в области высоких частот (при d < δ) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

При экранировании магнитных полей различают низкочастотные магнитные поля и высокочастотные. используется для наводок низкой частоты в диапазоне от 0 до 3…10 кГц. Низкочастотные магнитные поля шунтируются экраном за счет направленности силовых линий вдоль стенок экрана.

Рассмотрим более подробно принцип магнитостатического экранирования .

Вокруг элемента (пусть это будет виток) с постоянным током существует магнитное поле напряженностью H 0 , которое необходимо экранировать. Для этого окружим виток замкнутым экраном, магнитная проницаемость µ которого больше единицы. Экран намагнитится, в результате чего создастся вторичное поле, которое ослабит первичное поле вне экрана. То есть силовые линии поля витка, встречая экран, обладающий меньшим магнитным сопротивлением, чем воздух, стремятся пройти по стенкам экрана и в меньшем количестве доходят до пространства вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана (Рисунок 16.1) .


Рис. 16.1.

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим :

  • магнитная проницаемость µ материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например, пермаллой);
  • увеличение толщины стенок экрана приводит к повышению эффективности экранирования , однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;
  • стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;
  • заземление экрана не влияет на эффективность магнитостатического экранирования .

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Электромагнитное экранирование применяется на высоких частотах. Действие такого экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданными вихревыми токами обратного напряжения. Этот способ экранирования может ослаблять как магнитные, так и электрические поля, поэтому называется электромагнитным.

Упрощенная физическая сущность электромагнитного экранирования сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках – токи, поля которых во внешнем пространстве противоположны полям источника и примерно равны ему по интенсивности. Два поля компенсируют друг друга.

С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн в его металлической толще. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран и материала экрана. Чем больше это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования определяемый отражением электромагнитных волн .

Выбор материала для экрана зависит от многих условий. Металлические материалы выбирают по следующим критериям и условиям:

  • необходимость достижения определенной величины ослабления электромагнитного поля при наличии ограничения размеров экрана и его влияния на объект защиты;
  • устойчивость и прочность металла как материала.

Среди наиболее распространенных металлов для изготовления экранов можно назвать сталь, медь, алюминий, латунь. Популярность этих материалов в первую очередь обусловлена достаточно высокой эффективностью экранирования . Сталь популярна также вследствие возможности использования сварки при монтаже экрана.

К недостаткам листовых металлических экранов можно отнести высокую стоимость, большой вес, крупные габариты и сложность монтажа. Этих недостатков лишены металлические сетки . Они легче, проще в изготовлении и размещении, дешевле. Основными параметрами сетки является ее шаг, равный расстоянию между соседними центрами проволоки, радиус проволоки и удельная проводимость материала сетки. К недостаткам металлических сеток относят, прежде всего, высокий износ по сравнению с листовыми экранами.

Для экранирования также применяются фольговые материалы . К ним относятся электрически тонкие материалы толщиной 0,01…0,05 мм. Фольговые материалы в основном производятся из диамагнитных материалов – алюминий, латунь, цинк.

Перспективным направлением в области экранирования является применение токопроводящих красок , так как они дешевые, не требуют работ по монтажу, просты в применении. Токопроводящие краски создаются на основе диэлектрического пленкообразующего материала с добавлением в него проводящих составляющих, пластификатора и отвердителя. В качестве токопроводящих пигментов используют коллоидное серебро, графит, сажу, оксиды металлов, порошковую медь, алюминий.

Токопроводящие краски лишены недостатков листовых экранов и механических решеток, так как достаточно устойчивы в условиях резких климатических изменений и просты в эксплуатации.

Следует отметить, что экранироваться могут не только отдельные ТСПИ, но и помещения в целом. В неэкранированных помещениях функции экрана частично выполняют железобетонные составляющие в стенах. В окнах и дверях их нет, поэтому они более уязвимы.

При экранировании помещений используются: листовая сталь толщиной до 2 мм, стальная (медная, латунная) сетка с ячейкой до 2,5 мм. В защищенных помещениях экранируются двери и окна. Окна экранируются сеткой, металлизированными шторами, металлизацией стекол и оклеиванием их токопроводящими пленками. Двери выполняются из стали или покрываются токопроводящими материалами (стальной лист, металлическая сетка). Особое внимание обращается на наличие электрического контакта токопроводящих слоев двери и стен по всему периметру дверного проема. При экранировании полей недопустимо наличие зазоров, щелей в экране. Размер ячейки сетки должен быть не более 0,1 длины волны излучения.

В защищенной ПЭВМ, например, экранируются блоки управления электронно-лучевой трубкой, корпус выполняется из стали или металлизируется изнутри, экран монитора покрывается токопроводящей заземленной пленкой и (или) защищается металлической сеткой.

Следует отметить, что помимо функции защиты от утечки информации через ПЭМИН, экранирование может снизить вредное воздействие электромагнитного излучения на людей и уровень шумов при работе ТСПИ.

Сервис анализа защищенности предназначен для выявления уязвимых мест с целью их оперативной ликвидации. Сам по себе этот сервис ни от чего не защищает, но помогает обнаружить (и устранить) пробелы в защите раньше, чем их сможет использовать злоумышленник. В первую очередь, имеются в виду не архитектурные (их ликвидировать сложно), а "оперативные" бреши, появившиеся в результате ошибок администрирования или из-за невнимания к обновлению версий программного обеспечения.

Системы анализа защищенности (называемые также сканерами защищенности ), как и рассмотренные выше средства активного аудита, основаны на накоплении и использовании знаний. В данном случае имеются в виду знания о пробелах в защите: о том, как их искать, насколько они серьезны и как их устранять.

Соответственно, ядром таких систем является база уязвимых мест , которая определяет доступный диапазон возможностей и требует практически постоянной актуализации.

В принципе, могут выявляться бреши самой разной природы: наличие вредоносного ПО (в частности, вирусов), слабые пароли пользователей, неудачно сконфигурированные операционные системы, небезопасные сетевые сервисы, неустановленные заплаты, уязвимости в приложениях и т.д. Однако наиболее эффективными являются сетевые сканеры (очевидно, в силу доминирования семейства протоколов TCP/IP), а также антивирусные средства. Антивирусную защиту мы причисляем к средствам анализа защищенности, не считая ее отдельным сервисом безопасности.

Сканеры могут выявлять уязвимые места как путем пассивного анализа, то есть изучения конфигурационных файлов, задействованных портов и т.п., так и путем имитации действий атакующего. Некоторые найденные уязвимые места могут устраняться автоматически (например, лечение зараженных файлов), о других сообщается администратору.

Системы анализа защищенности снабжены традиционным "технологическим сахаром": автообнаружением компонентов анализируемой ИС и графическим интерфейсом (помогающим, в частности, эффективно работать с протоколом сканирования).

С возможностями свободно распространяемого сканера Nessus можно ознакомиться, прочитав статью "Сканер защищенности Nessus: уникальное предложение на российском рынке" (Jet Info,).

Контроль, обеспечиваемый системами анализа защищенности, носит реактивный, запаздывающий характер, он не защищает от новых атак, однако следует помнить, что оборона должна быть эшелонированной, и в качестве одного из рубежей контроль защищенности вполне адекватен. Отметим также, что подавляющее большинство атак носит рутинный характер; они возможны только потому, что известные бреши в защите годами остаются неустраненными.

Виды экранирования. Принципы действия экранов.

Под экранированием в общем случае понимается как защита приборов от воздействия внешних полей, так и локализация излучения каких-либо средств, препятствующая проявлению этих излучений в окружающей среде.

Электромагнитными экранами называют конструкции, предназначенные для ослабления электромагнитных полей, создаваемых какими-либо источниками в некоторой области пространства, не содержащей этих источников.

Если экран обеспечивает требуемое ослабление электростатического (или квазиэлектростатического) поля, но практически не ослабляет магнитостатического (или квазимагнитостатического) поля, то его называют электростатическим.

Если экран должен существенно ослаблять магнитостатическое (или квазимагнитостатическое) поле, то его называют магнитостатическим.

Если же экран должен ослаблять переменное электромагнитное поле, то экран называется электромагнитным.

Принципы действия всех видов экранов приведены в таблице.


в

Только в простейших случаях эффективность экрана определяется однозначно. К таким случаям относятся:

Экранирование полупространства от плоской электромагнитной волны бесконечным плоским однородным экраном;

Экранирование однородным шаровым экраном точечного источника, расположенного в его центре;

Экранирование однородным бесконечно протяженным цилиндрическим экраном линейного источника, лежащего на его оси.

В теории электромагнитного экранирования рассматриваются в первую очередь именно такие случаи, а реальные случаи сводятся к ним путем большей или меньшей идеализации. Естественно, что при этом в соответствующей степени страдает точность оценки.

В особо сложных случаях приходится прибегать к ряду условностей, например, определять ее для области защищаемого пространства, лежащей на достаточно большом расстоянии от экрана, для худшей точки этой области, для худшего из возможных расположений источника поля. В таких случаях точность оценки еще более снижается и можно с уверенностью судить на основании расчетов лишь о порядке наименьшей возможной эффективности.

Толщина экрана, необходимая для обеспечения заданного значения его эффективности, легко определяется из зависимости глубины проникновения от частоты для различных материалов, часто используемых при изготовлении экранов, приведены на рис. 1.